lsdb.loaders.hats#
Submodules#
Functions#
|
Load a catalog from a HATS formatted catalog. |
Package Contents#
- read_hats(path: str | pathlib.Path | upath.UPath, search_filter: lsdb.core.search.abstract_search.AbstractSearch | None = None, columns: list[str] | str | None = None, margin_cache: str | pathlib.Path | upath.UPath | None = None, dtype_backend: str | None = 'pyarrow', **kwargs) lsdb.types.CatalogTypeVar | None [source]#
Load a catalog from a HATS formatted catalog.
Typical usage example, where we load a catalog with a subset of columns:
lsdb.read_hats(path="./my_catalog_dir", columns=["ra","dec"])
Typical usage example, where we load a catalog from a cone search:
lsdb.read_hats( path="./my_catalog_dir", columns=["ra","dec"], search_filter=lsdb.core.search.ConeSearch(ra, dec, radius_arcsec), )
- Parameters:
path (UPath | Path) – The path that locates the root of the HATS catalog
search_filter (Type[AbstractSearch]) – Default None. The filter method to be applied.
columns (List[str]) – Default None. The set of columns to filter the catalog on. If None, the catalog’s default columns will be loaded. To load all catalog columns, use columns=”all”
margin_cache (path-like) – Default None. The margin for the main catalog, provided as a path.
dtype_backend (str) – Backend data type to apply to the catalog. Defaults to “pyarrow”. If None, no type conversion is performed.
**kwargs – Arguments to pass to the pandas parquet file reader
- Returns:
Catalog object loaded from the given parameters
Examples
To read a catalog from a public S3 bucket, call it as follows:
from upath import UPath catalog = lsdb.read_hats(UPath(..., anon=True))