lsdb.nested.datasets.generation#
Functions#
|
Generates a toy dataset. |
|
|
|
Generates a random set of RA and Dec values within a given range. |
|
|
|
Generates a toy catalog. |
Module Contents#
- generate_data(n_base, n_layer, npartitions=1, seed=None, ra_range=(0.0, 360.0), dec_range=(-90, 90), search_region=None)[source]#
Generates a toy dataset.
Docstring copied from nested-pandas.
- Parameters:
n_base (int) – The number of rows to generate for the base layer
n_layer (int, or dict) – The number of rows per n_base row to generate for a nested layer. Alternatively, a dictionary of layer label, layer_size pairs may be specified to created multiple nested columns with custom sizing.
npartitions (int) – The number of partitions to split the data into.
seed (int) – A seed to use for random generation of data
ra_range (tuple) – A tuple of the min and max values for the ra column in degrees
dec_range (tuple) – A tuple of the min and max values for the dec column in degrees
search_region (AbstractSearch) – A search region to apply to the generated data. Currently supports the ConeSearch, BoxSearch, and PixelSearch regions. Note that if provided, this will override the ra_range and dec_range parameters.
- Returns:
The constructed Dask NestedFrame.
- Return type:
Examples
>>> from lsdb.nested.datasets import generate_data >>> nf = generate_data(10,100) >>> nf = generate_data(10, {"nested_a": 100, "nested_b": 200})
Constraining spatial ranges: >>> nf = generate_data(10, 100, ra_range=(0., 10.), dec_range=(-5., 0.))
Using a search region: >>> from lsdb.core.search import ConeSearch >>> nf = generate_data(10, 100, search_region=ConeSearch(5, 5, 1))
- _generate_cone_search(cone_search: lsdb.core.search.ConeSearch, n_base: int, seed: int | None = None) tuple[numpy.ndarray, numpy.ndarray] [source]#
- _generate_box_radec(ra_range, dec_range, n_base, seed=None)[source]#
Generates a random set of RA and Dec values within a given range.
- Parameters:
ra_range (tuple) – A tuple of the min and max values for the ra column in degrees
dec_range (tuple) – A tuple of the min and max values for the dec column in degrees
n_base (int) – The number of rows to generate for the base layer
seed (int) – A seed to use for random generation of data
- Returns:
An array of shape (n_base, 2) containing the generated RA and Dec values.
- Return type:
np.ndarray
- _generate_pixel_search(pixel_search: lsdb.core.search.PixelSearch, n_base: int, seed=None, gen_order: int = 29) tuple[numpy.ndarray, numpy.ndarray] [source]#
- generate_catalog(n_base, n_layer, seed=None, ra_range=(0.0, 360.0), dec_range=(-90, 90), search_region=None, **kwargs)[source]#
Generates a toy catalog.
- Parameters:
n_base (int) – The number of rows to generate for the base layer
n_layer (int, or dict) – The number of rows per n_base row to generate for a nested layer. Alternatively, a dictionary of layer label, layer_size pairs may be specified to created multiple nested columns with custom sizing.
seed (int) – A seed to use for random generation of data
ra_range (tuple) – A tuple of the min and max values for the ra column in degrees
dec_range (tuple) – A tuple of the min and max values for the dec column in degrees
search_region (AbstractSearch) – A search region to apply to the generated data. Currently supports the ConeSearch and BoxSearch regions. Note that if provided, this will override the ra_range and dec_range parameters.
**kwargs – Additional keyword arguments to pass to lsdb.from_dataframe.
- Returns:
The constructed LSDB Catalog.
- Return type:
Examples
>>> from lsdb.nested.datasets import generate_catalog >>> gen_cat = generate_catalog(10,100) >>> gen_cat = generate_catalog(1000, 10, ra_range=(0.,10.), dec_range=(-5.,0.))
Constraining spatial ranges: >>> gen_cat = generate_data(10, 100, ra_range=(0., 10.), dec_range=(-5., 0.))
Using a search region: >>> from lsdb.core.search import ConeSearch # doctest: +SKIP >>> gen_cat = generate_data(10, 100, search_region=ConeSearch(5, 5, 1))